Database Integrity in Django:

Safely Handling Critical Data
in Distributed Systems

Dealing with concurrency, money,
and log-structured data in the Django ORM

Nick Sweeting (@theSquashSH)

Slides: github.com/pirate/django—-concurrency—-talk

NONdAICa

Background

Nick Sweeting

Twitter: theSquashSH | Github: pirate
Co-Founder/CTO @ Monadical.com

We built OddSlingers.com, a fast, clean online poker
experience made with Django + Channels & React/Redux.
We learned a lot about database integrity along the way.

Disclaimer: | am not
a distributed systems expert.

| just think they're neat.

http://monadical.com
http://OddSlingers.com

It all starts with a single salami slice.

It ends with millions of dollars missing.

— Dealing with money

float, Decimal, and math

Avoiding concurrency

linearizing writes in a queue

Dealing with concurrency

transactions, locking, compare-and-swaps

Schema design

log-structured data, minimizing locks

The bigger picture

code layout, storage layer, NewSQL databases

Dealing With Money

float, Decimal, & math

TTeAMAAMMANA LA e,
ALY, 4@

al!l[}_!_l_

Losing track of fractional cents
(aka salami slicing)

class Payout(models.Model):
amt = models.DecimalField(max_digits=20, decimal_places=2)

Payout.objects.create(amt=100000/7)
saves: 14285.71 instead of 14285.714285714

Do this 10 million times and suddenly you've lost track of 0.0043 * 10m = $42,857.

| kKnow you're tempted,
don't even try it...
salami slicers all

get caught eventually

float vs Decimal

>>> 0.1 + 0.2 >>>0.1+0.2==0.3
0.30000000000000004 False

Floating-point math introduces error that can accumulate.

>>> from decimal import Decimal
>>> Decimal('0.1') + Decimal('0.2")
Decimal('0.3")

Much better.

Rounding in Python 3

>>> round(1.5)
2

>>> round(2.5)
2

Get expected rounding behavior with:

>>> decimal.Decimal('2.5").quantize(decimal.Decimal('1"),
rounding=decimal.ROUND_HALF_UP)
Decimal('3")

Dealing with money

float, Decimal, and math

———) Avoiding concurrency

linearizing writes in a queue

Dealing with concurrency

transactions, locking, compare-and-swaps

Schema design

log-structured data, minimizing locks

The bigger picture

code layout, storage layer, NewSQL databases

Avoid Concurrency

Eliminate the dragons.

What is a distributed system?
Every Django app.

> Each Django request handler is a separate thread

> What happens when two threads try to do something
critical at the same time? e.g. update a user's balance

Django Workers

0 e
o - -

A

- Database
O v
O oo)

D

O &
o >

Other threads writing will break the bank

Failure if two threads execute withdrawals at once:
if (user.balance == 100) {
user.balance —= 100 # 2nd thread can .save() a 100 withdrawal befo
user.save() # balance is now © but should be -100
¥

aka "Time of check to time of use”-bug (TOCTTOU,).

$0 instead of $-100

The Challenge

Dealing with concurrent write conflicts

A solution: remove the concurrency

Django Workers

IS Strictly order all state
m mutations by timestamp
@
Dalabase
I \
Queue

Linearize all the writes into a single queue

transactions = [
timestamp condition action

(1523518620, ‘"can_deposit(241)" , ‘"deposit usd(241, 50)"),
(1523518634, '"balance_gt(241, 50)", '"buy_chips(241, 50)"),

If only one change happens at a time,

no conflicting writes can occur.

Execute the writes 1 by 1 in a dedicated process

(using a Redis Queue, or Dramatiq, Celery, etc.)

while True:
ts, condition, action = transaction_queue.pop()

if eval(condition):
eval(action)

Don't let any other processes touch the same tables.

All checks & writes are now linearized.

OO0 0

Eliminate concurrency at all costs.

If you value your sanity,
linearize critical transactions into a single queue
whenever possible.

Don't even watch the rest of the talk,
just stop now, really, you probably don't need concurrency...

Dealing with money

float, Decimal, and math

Avoiding concurrency

linearizing writes in a queue

Dealing with concurrency

transactions, locking, compare-and-swaps

Schema design

log-structured data, minimizing locks

The bigger picture

code layout, storage layer, NewSQL databases

Dealing With Concurrency

transactions, locking, compare-and-swaps

| warned you about the dragons...

Tools the ORM provides

> Atomic transactions transaction.atomic()

> Locking Model.objects.select_for _update()

> Compare-and-swaps .filter(val=expected).update(val=new)

Atomic Transactions

with transaction.atomic(): *

thing = SomeModel.objects.create(...)
other_thing = SomeModel.objects.create(...)

if error_condition(...):
raise Exception('Rolls back entire transaction')

Exceptions roll back the entire transaction block.
Neither object will be saved to the DB.

Transactions can be nested.

Row Locking

(pessimistic concurrency)

with transaction.atomic():

to_update = SomeModel.objects.select_for_update().filter(id=thing.id)

to_update.update(val=new)

.select_for update() allows you to lock rows

Locking prevents other threads from changing
the row until the end of the current transaction,
when the lock is released.

Atomic compare-and-swaps

(optimistic concurrency)

last_changed = obj.modified

SomeModel.objects.filter(id=obj.id, modified=1last_changed).update(val=new_val)

Only updates if the db row is unchanged by other threads.

> any modified obj in db will differ from our stale in-memory obj ts
> filter() wont match any rows, update() fails
> overwriting newer row in db with stale data is prevented

This is very hard to get right, locking is better for 90% of use cases!

Hybrid Solution

(optimistic concurrency + pessimistic or Multiversion Concurrency Control)

last_changed = obj.modified
read phase

SomeModel.objects.select_for_update().filter(id=obj.id, modified=1last_changed)

. write phase

Best of both worlds

> locking is limited to write-phase only
> no need for complex multi-model compare-and-swaps

MVCC is used internally by PostgreSQL

Alternative: SQL gap-locking w/ filter query on indexed col.

Dealing with money

float, Decimal, and math

Avoiding concurrency

linearizing writes in a queue

Dealing with concurrency

transactions, locking, compare-and-swaps

Schema design

log-structured data, minimizing locks

The bigger picture

code layout, storage layer, NewSQL databases

Schema Design

log-structured data, minimizing locks

| TTTTATTIvLT

/

Append Only

What is log-structured data?

Append-only tables vs mutable tables

> Mutable example

User Balance
Alice 52
Bob 21

> Log-structured example (immutable, append-only)

Timestamp User Transfer
1500000001 Alice +100
1500000002 Alice - 80
1500000003 Bob + 2

Totals are derived from sum of rows for a given user

Log-structured storage is a foundational
building block of safe, distributed systems.

- Provides strict ordering of writes
- Immutable log of every change
- Ability to revert to any point in time

See: redux, CouchDB, Redis

But log-structured tables make
locking hard...

Because any new row added can change the total,

we'd have to lock the entire BalanceTransfer
table to prevent concurrent processes from
adding new transfers that change the total.

How else can we prevent
concurrent writes from changing a
user's balance?

Store a total separately from the log,
require they be updated together

class UserBalance(models.model):
user = models.OneToOneField(User)
total = models.DecimalField(max_digits=20, decimal_places=2)

A single-row lock must now be obtained on the total
before adding new BalanceTransfer rows for that user.

Full example using locking

def send_money(src, dst, amt):
with transaction.atomic():
Lock balance rows, preventing other threads from making changes
src_bal = UserBalance.objects.select_for_update().filter(id=src)
dst_bal = UserBalance.objects.select_for_update().filter(id=dst)

if src_bal[0@].total < amt:
raise Exception('Not enough balance to complete transaction')

Update the totals and add a BalanceTransfer log row together
BalanceTransfer.objects.create(src=src, dst=dst, amt=amt)
src_bal.update(total=F('total') - amt)
dst_bal.update(total=F('total') + amt)

Side benefit: no need to scan entire BalanceTransfer
table anymore to get a user's balance

Log-structured data is great, but...

it requires careful thought to:

- minimize detrimental whole-table locking
- access aggregate values without scanning

Dealing with money

float, Decimal, and math

Avoiding concurrency

linearizing writes in a queue

Dealing with concurrency

transactions, locking, compare-and-swaps

Schema design

log-structured data, minimizing locks

ﬁ The bigger picture

code layout, storage layer, NewSQL databases

The bigger picture

code layout, storage layer, NewSQL databases

What happens when the butterflies flip your bits?

Code Layout

> Only perform writes via helper funcs, never update models directly

> Put all transactions in one file for easier auditing & testing

banking/transactions.py: from banking.transactions import transfer_money

def transfer_money(src, dst, amt):
with transaction.atomic():

def merge_accounts(user_a, user_b):
with transaction.atomic():

def archive account(user):
with transaction.atomic():

Hardware Layer Concerns

> The database can't guarantee data integrity on its own
> Bit flips are common, use ECC RAM (and ZFS!)

> Streaming replication or snapshots to do offsite-backups

> Synchronizing clocks between systems is very hard

Database Isolation Levels

In some modes, partial transaction state can leak into other threads.

DATABASES = {
"OPTIONS': |
‘isolation_level':psycopg2.extensions.ISOLATION_LEVEL_SERIALIZABLE,

Strict Serializable

PN

Serializable Linearizable

Repeatable Snapshot Sequential
Read Isolation \
Cursor Monotonic il
Stability Atomic View \
Read PRAM
Committed f \

’ “

‘ Writes ‘ Read
Read Follow Monotonic Monotonic Your
Uncommitted Reads Reads Writes Writes

Highly complex topic, much more info can be found elsewhere...

It's possible to use a separate database
with a higher isolation level for critical data

with transaction.atomic(using='default'):
with transaction.atomic(using="banking"'):
MyModel one(...).save(using="'default")
MyModel two(...).save(using="'banking"')

Django supports transactions across multiple databases.

What the Future Looks Like

Serializable, distributed SQL without sharding.
SQL on top of >

key:val store on top of >
raft-based log-structured storage

>0 9 O

CockroachDB & TiDB work with Python

Dealing with money

float, Decimal, and math

Avoiding concurrency

linearizing writes in a queue

Dealing with concurrency

transactions, locking, compare-and-swaps

Schema design

log-structured data, minimizing locks

The bigger picture

code layout, storage layer, NewSQL databases

ﬁ The End

Key takeaways: don't stop worrying,
but love atomic()

Don’t use floats.
Don’t use round(), if yvou must, always account for the remainder.
Don’t execute non thread-safe writes in a parallel environment.

Use Decimal instead of float, and Decimal.quantize() instead of round() :

Decimal('®.35') + Decimal('100.15"')

Lock dependent rows during transactions:

with transaction.atomic():
players = Player.objects.filter(user=user).select_for_update()
user.balance = player_balance_sum(players)
user.save()

Use atomic compare—and-swap operations when you cant lock:

User.objects.filter(id=user.id, balance__gt=50)\
.update(balance=F('balance) - 50)°

Q&A

Special thanks to:
Django Core Team & Contributors,
PyGotham Organizers, Andrew Godwin,
Aphyr, Tyler Neely

Final Disclaimer: I'm not qualified to tell you how to
design your distributed system. Get a professional for that.

| can only show you challenges and solutions I've discovered in my personal
adventures with Django. Please let me know if you have corrections!

Monadical is hiring and taking investment right now!
contact me: talks@sweeting.me

Slides & Info: github.com/pirate/django—-concurrency-talk

