
Database Integrity in Django:
Safely Handling Critical Data

in Distributed Systems

Dealing with concurrency, money,
and log-structured data in the Django ORM

Nick Sweeting (@theSquashSH)

Slides: github.com/pirate/django-concurrency-talk

Nick	Swee)ng	
Twi-er:	theSquashSH		|		Github:	pirate	
Co-Founder/CTO	@	Monadical.com	

 

 
We	built	OddSlingers.com,	a	fast,	clean	online	poker	

experience	made	with	Django	+	Channels	&	React/Redux.	
We	learned	a	lot	about	database	integrity	along	the	way.

Background

Disclaimer:	I	am	not		
a	distributed	systems	expert.	

I	just	think	they're	neat.

http://monadical.com
http://OddSlingers.com

It	all	starts	with	a	single	salami	slice.

It	ends	with	millions	of	dollars	missing.

Dealing	with	money  
					float,	Decimal,	and	math  

Avoiding	concurrency	
				linearizing	writes	in	a	queue 

Dealing	with	concurrency  
				transac)ons,	locking,	compare-and-swaps  

Schema	design 
				log-structured	data,	minimizing	locks 

The	bigger	picture  
				code	layout,	storage	layer,	NewSQL	databases	

Dealing With Money  
 

float,	Decimal,	&	math

Losing	track	of	frac)onal	cents
(aka	salami	slicing)

I know you're tempted,

don't even try it...

salami slicers all

get caught eventually

float	vs	Decimal

>>>	0.1	+	0.2	==	0.3
False

Rounding	in	Python	3

>>>	round(1.5)

>>>	round(2.5)

2

2

wat.

Dealing	with	money  
					float,	Decimal,	and	math  

Avoiding	concurrency	
				linearizing	writes	in	a	queue 

Dealing	with	concurrency  
				transac)ons,	locking,	compare-and-swaps  

Schema	design 
				log-structured	data,	minimizing	locks 

The	bigger	picture  
				code	layout,	storage	layer,	NewSQL	databases	

Avoid Concurrency  
 

Eliminate	the	dragons.

?

What	is	a	distributed	system?
Every	Django	app.

>	Each	Django	request	handler	is	a	separate	thread	

>	What	happens	when	two	threads	try	to	do	something	
cri?cal	at	the	same	?me?	e.g.	update	a	user's	balance 

Other	threads	wri)ng	will	break	the	bank

$0 instead of $-100

The	Challenge
Dealing	with	concurrent	write	conflicts

A	solu?on:	remove	the	concurrency

Strictly	order	all	state	 
muta)ons	by)mestamp

Linearize	all	the	writes	into	a	single	queue

transactions = [
 # timestamp condition action

 (1523518620, "can_deposit(241)" , "deposit_usd(241, 50)"),
 (1523518634, "balance_gt(241, 50)", "buy_chips(241, 50)"),
]

If	only	one	change	happens	at	a)me,	

no	conflic)ng	writes	can	occur.

Execute	the	writes	1	by	1	in	a	dedicated	process

while True:
 ts, condition, action = transaction_queue.pop()

 if eval(condition):
 eval(action)

(using	a	Redis	Queue,	or	Drama)q,	Celery,	etc.)

Don't	let	any	other	processes	touch	the	same	tables.	

All	checks	&	writes	are	now	linearized.

If	you	value	your	sanity,	
linearize	cri)cal	transac)ons	into	a	single	queue	

whenever	possible. 

Don't	even	watch	the	rest	of	the	talk,	
just	stop	now,	really,	you	probably	don't	need	concurrency...

Eliminate	concurrency	at	all	costs.

Dealing	with	money  
					float,	Decimal,	and	math  

Avoiding	concurrency	
				linearizing	writes	in	a	queue 

Dealing	with	concurrency  
				transac)ons,	locking,	compare-and-swaps  

Schema	design 
				log-structured	data,	minimizing	locks 

The	bigger	picture  
				code	layout,	storage	layer,	NewSQL	databases	

Dealing With Concurrency  

transac)ons,	locking,	compare-and-swaps  

I	warned	you	about	the	dragons...	

❤

!

❤

❤

Tools	the	ORM	provides

>	Atomic	transac)ons										transac?on.atomic()	

>	Locking																														Model.objects.select_for_update()	

>	Compare-and-swaps						.filter(val=expected).update(val=new) 
			

Atomic	Transac)ons

with transaction.atomic():
 
 thing = SomeModel.objects.create(...)
 other_thing = SomeModel.objects.create(...)
  
 if error_condition(...): 
 raise Exception('Rolls back entire transaction')

Excep)ons	roll	back	the	en)re	transac)on	block.	

Neither	object	will	be	saved	to	the	DB. 
 

Transac)ons	can	be	nested.

Row	Locking

with transaction.atomic():
 
 to_update = SomeModel.objects.select_for_update().filter(id=thing.id)

 ...
  
 to_update.update(val=new)

.select_for_update()	allows	you	to	lock	rows	

	Locking	prevents	other	threads	from	changing	
the	row	un)l	the	end	of	the	current	transac)on,		

when	the	lock	is	released.

(pessimis)c	concurrency)

Atomic	compare-and-swaps

last_changed = obj.modified 

... 
 
SomeModel.objects.filter(id=obj.id, modified=last_changed).update(val=new_val)

Only	updates	if	the	db	row	is	unchanged	by	other	threads.	
 
>	any	modified	obj	in	db	will	differ	from	our	stale	in-memory	obj	ts	
>	filter()	wont	match	any	rows,	update()	fails	
>	overwri)ng	newer	row	in	db	with	stale	data	is	prevented	

This	is	very	hard	to	get	right,	locking	is	be-er	for	90%	of	use	cases!

(op)mis)c	concurrency)

Hybrid	Solu)on

last_changed = obj.modified 

... read phase 
 
SomeModel.objects.select_for_update().filter(id=obj.id, modified=last_changed) 
 
... write phase

Best	of	both	worlds	
 
>	locking	is	limited	to	write-phase	only	
>	no	need	for	complex	mul)-model	compare-and-swaps	

																	MVCC	is	used	internally	by	PostgreSQL 

Alterna)ve:	SQL	gap-locking	w/	filter	query	on	indexed	col.

(op)mis)c	concurrency	+	pessimis)c	or	Mul)version	Concurrency	Control)

Dealing	with	money  
					float,	Decimal,	and	math  

Avoiding	concurrency	
				linearizing	writes	in	a	queue 

Dealing	with	concurrency  
				transac)ons,	locking,	compare-and-swaps  

Schema	design 
				log-structured	data,	minimizing	locks 

The	bigger	picture  
				code	layout,	storage	layer,	NewSQL	databases	

Schema Design  

log-structured	data,	minimizing	locks

What	is	log-structured	data?
Append-only	tables	vs	mutable	tables

>	Mutable	example	
					User.balance	=	100	
 
 

>	Log-structured	example	(immutable,	append-only)	
					User.balance	=	()	=>	
										sum(BalanceTransfer.objects	
																																	.filter(user=user)	
																																	.values_list('amt',	flat=True))

Log-structured	storage	is	a	founda?onal	
building	block	of	safe,	distributed	systems.

-	Provides	strict	ordering	of	writes	
-	Immutable	log	of	every	change	

-	Ability	to	revert	to	any	point	in)me	
 

See:	redux,	CouchDB,	Redis

But	log-structured	tables	make	
	locking	hard...

we'd	have	to	lock	the	en)re	BalanceTransfer	
table	to	prevent	concurrent	processes	from	
adding	new	transfers	that	change	the	total.

How	else	can	we	prevent	
concurrent	writes	from	changing	a	

user's	balance?

Because	any	new	row	added	can	change	the	total,

Store	a	total	separately	from	the	log,		
require	they	be	updated	together

class UserBalance(models.model):
 user = models.OneToOneField(User)
 total = models.DecimalField(max_digits=20, decimal_places=2)

A	single-row	lock	must	now	be	obtained	on	the	total	
before	adding	new	BalanceTransfer	rows	for	that	user.

Full	example	using	locking

def send_money(src, dst, amt):
 with transaction.atomic():
 # Lock balance rows, preventing other threads from making changes
 src_bal = UserBalance.objects.select_for_update().filter(id=src) 
 dst_bal = UserBalance.objects.select_for_update().filter(id=dst)

 if src_bal[0].total < amt:
 raise Exception('Not enough balance to complete transaction')

 # Update the totals and add a BalanceTransfer log row together
 BalanceTransfer.objects.create(src=src, dst=dst, amt=amt)
 src_bal.update(total=F('total') - amt)
 dst_bal.update(total=F('total') + amt)

Side	benefit:	no	need	to	scan	en)re	BalanceTransfer		
table	anymore	to	get	a	user's	balance

Log-structured	data	is	great,	but...	

it	requires	careful	thought	to:	

-	minimize	detrimental	whole-table	locking 
-	access	aggregate	values	without	scanning

Dealing	with	money  
					float,	Decimal,	and	math  

Avoiding	concurrency	
				linearizing	writes	in	a	queue 

Dealing	with	concurrency  
				transac)ons,	locking,	compare-and-swaps  

Schema	design 
				log-structured	data,	minimizing	locks 

The	bigger	picture  
				code	layout,	storage	layer,	NewSQL	databases	

The bigger picture 

code	layout,	storage	layer,	NewSQL	databases	

 
What	happens	when	the	bu-erflies	flip	your	bits?

Code	Layout

>	Only	perform	writes	via	helper	funcs,	never	update	models	directly	
 
>	Put	all	transac)ons	in	one	file	for	easier	audi)ng	&	tes)ng

banking/transactions.py: 
 
def transfer_money(src, dst, amt):
 with transaction.atomic():
 ...

def merge_accounts(user_a, user_b):
 with transaction.atomic():
 ...

def archive_account(user):
 with transaction.atomic():
 ...

from banking.transactions import transfer_money

...

OFFSITE BACKUPS. OFFSITE BACKUPS. SET UP YOUR OFFSITE BACKUPS.
OFFSITE BACKUPS. OFFSITE BACKUPS. TEST YOUR OFFSITE BACKUPS.
OFFSITE BACKUPS. OFFSITE BACKUPS. OFFSITE BACKUPS.
OFFSITE BACKUPS. OFFSITE BACKUPS. OFFSITE BACKUPS.
OFFSITE BACKUPS. OFFSITE BACKUPS. OFFSITE BACKUPS.
OFFSITE BACKUPS. OFFSITE BACKUPS. OFFSITE BACKUPS.
OFFSITE BACKUPS. OFFSITE BACKUPS. OFFSITE BACKUPS.
OFFSITE BACKUPS. OFFSITE BACKUPS. OFFSITE BACKUPS.
OFFSITE BACKUPS. OFFSITE BACKUPS. OFFSITE BACKUPS.
OFFSITE BACKUPS. OFFSITE BACKUPS. OFFSITE BACKUPS.
OFFSITE BACKUPS. OFFSITE BACKUPS. OFFSITE BACKUPS.
OFFSITE BACKUPS. OFFSITE BACKUPS. OFFSITE BACKUPS.
OFFSITE BACKUPS. OFFSITE BACKUPS. OFFSITE BACKUPS.
OFFSITE BACKUPS. OFFSITE BACKUPS. OFFSITE BACKUPS.

Hardware	Layer	Concerns

>	Bit	flips	are	common,	use	ECC	RAM	(and	ZFS!)

>	The	database	can't	guarantee	data	integrity	on	its	own

>	Streaming	replica)on	or	snapshots	to	do	offsite-backups

>	Synchronizing	clocks	between	systems	is	very	hard

Database	Isola)on	Levels
In	some	modes,	par)al	transac)on	state	can	leak	into	other	threads.

DATABASES = { 
 'OPTIONS': { 
 'isolation_level':psycopg2.extensions.ISOLATION_LEVEL_SERIALIZABLE,

Highly	complex	topic,	much	more	info	can	be	found	elsewhere...

It's	possible	to	use	a	separate	database	
with	a	higher	isola)on	level	for	cri)cal	data

with transaction.atomic(using='default'):
 with transaction.atomic(using='banking'):
 MyModel_one(...).save(using='default')
 MyModel_two(...).save(using='banking')

Django	supports	transac)ons	across	mul)ple	databases.

What	the	Future	Looks	Like 

Serializable,	distributed	SQL	without	sharding.	

SQL	on	top	of	>	
key:val	store	on	top	of	>	

rao-based	log-structured	storage	

CockroachDB	&	TiDB	work	with	Python

Dealing	with	money  
					float,	Decimal,	and	math  

Avoiding	concurrency	
				linearizing	writes	in	a	queue 

Dealing	with	concurrency  
				transac)ons,	locking,	compare-and-swaps  

Schema	design 
				log-structured	data,	minimizing	locks 

The	bigger	picture  
				code	layout,	storage	layer,	NewSQL	databases

The End

Key	takeaways:	don't	stop	worrying,	
but	love	atomic()

Special	thanks	to:	
Django	Core	Team	&	Contributors,	  

PyGotham	Organizers,	Andrew	Godwin,		
Aphyr,	Tyler	Neely	

Final	Disclaimer:	I'm	not	qualified	to	tell	you	how	to		
design	your	distributed	system.	Get	a	professional	for	that.	

 
I	can	only	show	you	challenges	and	solu)ons	I've	discovered	in	my	personal	

adventures	with	Django.		Please	let	me	know	if	you	have	correc)ons!	
 

Monadical	is	hiring	and	taking	investment	right	now!	
contact	me:	talks@swee)ng.me

Q&A

Slides & Info: github.com/pirate/django-concurrency-talk

